It has been a very exciting spring for the Materials Science and Engineering Department at the University of Florida! We continue to improve our program, both in research and in academics. I am proud to be able to say that our department is currently ranked 9th amongst public and private universities according to U.S. News and World Report in both undergraduate and graduate programs and I anticipate greater things to come as a result of the addition of our three outstanding new faculty members.

Dr. Simon Phillpot is a new full professor who joined us from Argonne National Laboratories. His research utilizes the tools of computational materials science to elucidate the effects of interfaces on the properties of materials. His current activities focus on thermal transport in nanostructures, the interplay of ferroelectricity and microstructure in oxide materials, and the properties of nanocrystalline ionic materials.

Dr. Juan Nino is a new assistant professor from Pennsylvania State University. His research focuses on the development of new low-fire temperature compensated dielectrics, ferroelectric pyrochlores, and microwave dielectrics with electronic properties tailored for tunable circuits, wireless communication components, and non-volatile memory.

Finally, Dr. Hans Seifert is a new associate professor who joined us from Alstom Power in Birr, Switzerland. His research area includes experimental measurements and computer coupling of multicomponent phase diagrams and materials thermodynamics (CALPHAD, Calculation of Phase Diagrams). Special emphasis is laid on the investigation of phase assembly - microstructure - property relationships in high temperature bulk materials and coatings (metal alloys, ceramics, composites) using Atmospheric Plasma Spraying (APS) and High Velocity Oxy-Fuel (HVOF) spraying methods.

These three new faculty are helping provide solid growth in the areas of novel oxides, computational materials science and high temperature materials. I am personally very excited to have them on board. I look forward to adding three new exceptional faculty from the faculty search to specialize in biomaterials and electron microscopy.

We also congratulate Professor Michael Kaufman on his recent promotion to chairman of the Materials Science and Engineering department at the University of North Texas in Denton. This is an exciting opportunity for him as he becomes the third faculty member from our department in the last 4 years to be selected as the chairman for another department. I believe this to be a strong indication of the quality of our faculty.

I am also pleased to note the growth in faculty is mirrored by the growth in our Ph.D. production. The department currently has 255 graduate students, 200 of which are Ph.D. students, making us the largest graduate program in Materials Science and Engineering in the country. This academic year we will graduate over 40 Ph.D. students, which is roughly 10% of the entire U.S. Ph.D. production in MSE. The undergraduate program also continues to be one of the largest in the nation with 165 students. To help the education process, we have implemented a new undergraduate core curriculum, which includes offering a biomaterials specialization at the bachelors level to go with our graduate specialization. We have also implemented a new graduate curriculum which is allowing us to better serve our graduate population.

As I look into the future, I am very excited about the direction the department is heading and I feel through the teamwork of our established researchers and programs and the addition of new students and faculty, we will be able to achieve our goal of being a top 5 department in the near future.

UF’s MSE Moves up in the Ranks!

The US News and World Report Rankings moved the MSE Graduate Program from its ranking of number 10 to being ranked 9th overall in the nation. UF’s MSE is now ranked 9th in both the Graduate and Undergraduate programs. Of the public institutions on the list, UF’s MSE Graduate Program ranks 6th.
I arrived in Gainesville in July 1989, (not the time of year to move to Gainesville I might add) after spending a couple of years at the National Institute of Science and Technology (formerly National Bureau of Standards) and three academic years at another major institution. I had interviewed at a number of other schools but selected UF largely because of the collegiality I observed among the faculty and staff. Unlike most of the other schools I had visited, worked in or attended during my education, this place struck me as rather unique in this respect. The faculty actually seemed to like one another and the Department appeared to be an “up and coming program”. After arriving, I discovered my impression of the department was actually on track and I got very excited about the opportunity before me. At the time, there was a fairly large, multi-investigator DARPA program on high temperature materials; I joined in and started working with quite a few of the MSE faculty. I also wrote numerous proposals, many of which were funded, so I started additional programs. Before I knew it, I was in charge of about fifteen graduate students, visiting scientists, etc. The support of Dr. Abbaschian, the staff and the college was great. I spent very little time worrying about some of the issues which were common in my former institutions. In fact, I was so busy I didn’t have time to worry about anything else. In other words, this department was a great place for a young, ambitious faculty member to establish himself in the scientific community.

As time went on, I became involved in a number of departmental committees – qualifying exams, faculty searches, MAIC, etc. – I was always impressed with the professionalism and sincerity of my colleagues as they actually seemed to care about the education and well being of our students. I believe I played a significant role in many of the new faculty hires which were made during this period. I look at these faculty and am proud of the success the department has had as a result of these hires. To reach such large numbers of faculty and students while maintaining a caring and accepting atmosphere for students, faculty and staff is not an easy task and yet I do feel the department continues to manage this in some miraculous manner. This is especially impressive in view of the greater diversity of research and teaching areas which are being pursued and I hope it will continue. It would clearly be a shame if the department were to lose this possibly unique atmosphere.

As of my writing this, I have spent approximately 2.5 months as the chair of the MSE department at the University of North Texas where we have a whopping five faculty members and about 30 graduate students. Since very few people (including me this time last year) have even heard of the MSE department at UNT, it is clear I have a huge challenge to build this program to some level of success and recognition. Fortunately, I feel my experiences at UF have prepared me well for this challenge and, not surprisingly, I envision having a collegial department of faculty and students who truly enjoy working together on projects that are technologically interesting and challenging. I have a great model to emulate and I am optimistic my colleagues and I will be able to attract faculty with a similar vision. Who knows, someday we might even share with the MSE department here the special notoriety of being one of the top ten MSE programs in the USA.

Juan Nino joins MSE from Penn State via Latin America. By Martha McDonald

Following a one-year post-doc stint focusing on epitaxial ferroelectric thin films at Penn State’s Materials Research Institute, Juan C. Nino joined the MSE faculty at UF in fall 2003 eager to pursue his dual passion of research and teaching. Dr. Nino hails from Bogotá, Colombia, and his research interest is “…on the development of new ceramic compounds and material systems for electronic components and device applications…” The type of materials that he investigates “…include dielectrics, resistors, frequency filters, ferroelectrics and mixed conductors... Some of the new materials being developed in his group are intended to be used in the newest generation of portable electronics such as cell-phones, PDAs, sensors, as well as in solid oxide fuel cells.”
Dr. Nino credits his father, a mechanical engineer, and a British-based secondary education in Colombia with nurturing his love of math and science. He took four courses in materials science while he earned his BS in mechanical engineering at the Universidad de Los Andes after completing one year of mandatory military service. Following his undergraduate studies, he explored an interest in teaching as a university lecturer in subjects like analytic geometry and experimental physics at the Colombian School of Engineering in Bogotá. However, in order to fully develop as a research scientist, he accepted an offer from Dr. Clive Randall at Penn State to pursue a doctoral degree specializing in electronic materials. Four years after entering Penn State, Dr. Nino completed his thesis on “Fundamental Structure-Property Relations towards Engineering of an Integrated NP0 Capacitor for Bi-Pyrochlore Systems” and graduated with a 3.92 GPA.

While pursuing his PhD, Dr. Nino was the teaching assistant for two introductory courses, Introduction to Materials Science and Materials Today. That experience sealed his commitment to teaching. He believes that “…assuring the highest quality of lectures is the most important aspect in teaching. This is especially significant for introductory courses where the professor is responsible for opening doors to new areas of knowledge to the students. This is why mere knowledge of the subject does not necessarily make a good teacher. It is quite likely that the impression the professor makes on the students will determine the overall motivation for certain subjects, therefore strong commitment and dedication has to be put into teaching…”

Dr. Nino is “…a firm believer in the evolution from chalk and blackboard and/or marker and whiteboard to computer-assisted teaching has to be made. Computers have demonstrated their enormous advantages in teaching as well as in learning. Evidently, this evolution does not necessarily yield to a fully computer-based teaching experience as still nothing beats a good teacher in a chalk based lecture, and nothing beats person-to-person interaction. Therefore this evolution process has to be carefully planned, studied, and developed. Nonetheless, it is clear that certain topics requiring 3-D visualization and variation in time are best displayed on a computer screen. Also, there are certain practices, such as on-line homework, on-line reviews, and even on-line quizzes, among others, that if well designed can make the teaching experience more fulfilling both for professors and students.” Last semester Dr. Nino introduced and tested the use of Tablet PC in the Physical Ceramics (EMA4144) course.

After moving from Colombia to Penn State, Dr. Nino has found the transition to UF and Gainesville, Florida, to be a comfortable one. While he enjoyed the seasonal changes up north, he is slowly getting used to the weather in Gainesville which is closer to the tropical climate of his hometown. Dr. Nino definitely misses the big-city energy of Bogotá, but he looks forward to visiting Columbia regularly in the future. He is particularly interested in establishing an exchange program for students in order to promote materials science in South America and to expand the international experience of MSE students at Florida.

Simon Phillpot brings a touch of England to MSE. By Doris Harlow

Simon Phillpot received his Bachelor of Arts degree in Physics from the University of Oxford, England in 1980. He accepted the President’s Scholarship and came to the United States to study at the University of Florida. Originally admitted as a Master’s student, he enjoyed life at UF so much, he decided to stay for his PhD. Although UF was larger than Oxford and the culture was very different, he enjoyed life at UF. “Oxford was very structured academically, whereas life at UF was much more laid back,” he stated. In 1985 he was awarded his PhD in Physics.

After graduation he accepted a postdoctoral research position at the Xerox Webster Research Center for a few years before moving to Argonne National Laboratory. There he performed the first atomic-level simulations of polycrystalline materials. He developed unique programs on atomic-level simulation of perovskite ferroelectrics and on multi-scale simulation of phonon-mediated thermal transport.

Despite almost 17 years in a national laboratory, Dr. Phillpot still missed university life. He decided
that he wanted to teach and interact closely with students, and remembered fondly his time at UF. Although he was a physics major, he had long since moved toward Materials Science with his research. When he saw the advertisement for a faculty position in computational materials science in UF’s Materials Science and Engineering Department he decided to apply for the position.

As a new faculty member, he was very impressed with the graduate recruiting week-end that was held in February. He said “Oxford did not recruit students so it was an experience for me. I enjoyed meeting the students and felt the excitement of the whole recruiting process.”

Within 5 years Dr. Phillpot hopes to have a thriving research group, built around the highly qualified students that the department’s very strong reputation is able to attract. At the present time, he is building a parallel computer cluster in one of the labs on the 2nd floor of Rhines Hall. His work on science-based computational materials is aimed at understanding what goes on in materials on a microstructure level. Working with heat transport, his objective is to understand how heat flow can be controlled, so as to protect the heat sensitive components of devices. He also studies ferroelectrics materials similar to those studied by Drs. Norton and Nino, but from the computational view.

When Dr. Phillpot is not thinking about materials science, he has many outside interests. In the past he has been PTA president, softball coach, cub master, as well as being involved in other school functions for his children. Now that his children are older, he has scaled these activities back. He is an avid reader as well as a history buff, preferring English and American history. He loves to read Shakespeare, collect maps, and makes a point to visit many of the civil war battlefields. Another hobby of his is to trace his family genealogy. He has spent many years doing this research and has found many interesting things about his family’s past.

Occasionally, he travels back to England with his wife, Melanie, and his two children, Caroline & John. He misses some things about England such as the food and the English beer, as well as some of the sports such as cricket and rugby.

Dr. Hans Seifert recently joined the MSE Department from Darmstadt, Germany. He has lived in other parts of Germany as well as Switzerland and now the United States. This is his first time living in the U.S. and he was very anxious about it. He felt one of the hardest adjustments he had to make was getting used to the administrative matters which he found to be an obstacle. Overall, he said living in the U.S. was different than living in Switzerland or Germany. He felt the people here were generally friendlier and open-minded. He misses the cultural setting of Germany such as the historical buildings and the food.

Being in Gainesville however, gives him the opportunity to participate in the outdoor activities which he loves such as biking, jogging, and scuba-diving. He also recently started tennis lessons which he is beginning to enjoy. Another hobby is photography. Although he is single, he has little time for outside interests at this time.

Hans Seifert joined MSE from Darmstadt, Germany. By Doris Harlow

Hans Seifert received his Bachelor of Science degree and his Master of Science degree in mineralogy from the University of Heidelberg in Germany. In 1993 he graduated Summa cum laude with his PhD from the University of Stuttgart and Max-Planck-Institut für Metallforschung Pulvermetallurgisches Laboratorium in Stuttgart, Germany. While in school he served as a teaching assistant for both undergraduate and graduate courses. He was a group leader (equivalent to an assistant professor at UF) at the Department of Materials Synthesis and Microstructure Design in Stuttgart, Germany. He was a research associate at the University of Stuttgart, Germany, and worked at the Department of Materials Science at Stockholm, Sweden and the Aleksander Krupkowski Institute for Metals Research in Cracow, Poland.

One of his goals was to work in academia and felt working in industry was a step toward that goal. He wanted to work in an academic institution that had a research aspect and the University of Florida’s MSE Department was known for its research.
His area of research is experimental measurements and computer coupling of multi-component phase diagrams and materials thermodynamics. His emphasis is on the investigation of phase assembly-microstructure-property relationships in high temperature bulk materials and coatings such as metal alloys, ceramics, composites using atmospheric plasma spraying and high velocity oxy-fuel spraying methods.

His plans for research are general topics including high temperature materials thermodynamics and chemistry. Currently, he is working on composite thermodynamics using computer simulation. He wants to optimize and use better protective coatings against corrosion, high temperature and thermo influence. This would protect the surface from oxidation and erosion. One of the many uses for this type of research is in a space shuttle, specifically the head shields. He feels this type of research would prevent another disaster such as the one that occurred with the Space Shuttle Challenger.

When asked where he sees himself in five years he smiled and said he would like to have a group of PhD researchers conducting a combination of computational work with experiments. He felt these go hand and hand. He states, “This area of research is definitely growing and there is a large interest in the field from international countries”. He stated an international collaboration was vital to this type of research and one country could not do the research alone.

He looks forward to the challenges which lay ahead for him and is acclimating himself to life at UF. He enjoyed the graduate recruiting weekend and was very impressed with the recruits who attended. He stated, “They were very professional and liked the ‘personal touch’ the department gave to each of the recruits.” He felt the department showed them we are here to help them pursue their academic goals.

AN INTERVIEW with Kelly Truman

Dr. Kelly Truman joined the MSE Department in July 2003 as the Director of Advanced Research Programs. To date, he has assisted faculty in pulling together 7 proposals. He has met with many people around campus to explore better ways to work with other faculty around UF’s campus. It was difficult to locate Dr. Truman for a personal interview so we had an on-line interview as follows. **What was your previous industry experience?**

Although I am a materials science PhD, my background is a bit unusual for university engineering faculty. After several years of industrial R&D work as a hands-on scientist, I found myself more interested in the business side of technology than the straightforward technical work itself. Living in Silicon Valley, there were many role models of technologists successfully moving into business, while still getting to use their technical backgrounds, seeing the world at the same time and making a few bucks. So I made the leap into technical marketing for a start-up business within Applied Materials, the world's largest maker of semiconductor manufacturing equipment. Talk about a steep learning curve, taking on a new profession with the fast pace of innovation and business in that industry, while traveling almost non-stop around the world! The business unit was very successful and grew quickly, so I had the opportunity to be leading the marketing efforts for a large business with many market-leading products in new technologies. I was then chosen to start and lead my own business unit, from technical concepts to a successful new market entry, complete with presentations to Wall Street analysts. It was great to learn the many managerial and operational aspects of running a business. At heart though, I was still a tech-geek, and the new technology was the best part of the job. For example, while leading the business unit I still was able to submit patents. My UF MSE graduate degree has given me a great foundation for this.

What attracted you to our Department? I have had a long, positive history with UF MSE. I am an alumni of the department, having received both the MS and PhD here under the amazing Dr Paul Holloway. During my industrial career I had the
pleasure to work with Paul Holloway and Kevin Jones as technical resources and consultants, and particularly enjoyed international conference destinations with Kevin. I also served on the department's distinguished alumni board. Over the years I was very impressed with the great improvements that were made in the department from when I first arrived in 1982. I was excited about the opportunity to help the alma mater and to dive into the latest materials science developments.

What are your job duties here at MSE? My role, in industrial terminology, is business development. I am tasked with helping to bring in large-scale, multi-disciplinary research funding for MSE and to help manage some of the programs coming in. In this role, I am a resource for the regular faculty, helping them with identifying funding opportunities, marketing their ideas, proposal writing and managing programs, which all make use of my industrial experience. As a MSE PhD, I greatly enjoy getting to learn new science and technologies in the wide breadth of subjects our faculty address.

What are your future plans? I look forward to helping raise the profile and ranking of the department through large-scale programs and also marketing of technology. I would also like to see some of our technology turned into technology start-up businesses, to bring some of the economic and social benefits brought to the Gainesville area that these businesses brought to Silicon Valley.

I know you have a family, how are your children adjusting? My four children love being in the Gainesville area, with family close by and so many wonderful opportunities for fun, outdoor play, and education. My oldest daughter (15) was born here, so it has been a homecoming for her. The kids do miss northern California, having grown up there, but they have made many great friends here and the lifestyle here is so much more supportive of kid-centric activities than Silicon Valley was. However, the jury is still out on banana spiders and palmetto bugs!

Awards and Accomplishments

Faculty Recognition

Richard “Doc” Connell was awarded the Triple Point Award at the Spring 2004 MSE Banquet. This award is given by the students each year to a faculty member for outstanding contributions to undergraduate education in the Department.

Brij Moudgil has been elected to serve as the president of the Society for Mining, Metallurgy, and Exploration in 2006. SME is an international society of professionals in the minerals and metals industry and serves around 13,000 members in approximately 100 countries.

Elliot Douglas has received the University of Florida’s Teacher of the Year award. The University of Florida recognizes its outstanding teachers from around the campus by awarding Teaching Awards, which are available to all colleges offering undergraduate instruction. These awards are to encourage and reward excellence, innovation, and effectiveness in teaching.

Rajiv Singh has been selected by the College of Engineering to receive a two-semester Sabbatical for the 2004-05 academic year.

Eugene Goldberg has been selected by the College of Engineering to receive a one-semester sabbatical during the 2004-05 academic year.

Laurie Gower has been selected by the College of Engineering to receive a one-semester sabbatical during the 2004-05 academic year.

Gerhard Fuchs along with Davis Bosarges from Lawton Chiles Elementary received a $1,000.00 check for the “Racing to the Future” project with Mr. Bosarges’ Science classes. The money received will be used toward the purchase of a Pitsco Impulse Race System, student supplies for the project and program software.

Reza Abbaschian received the 2003 American Society for Engineering Education (ASEE) Donald E. Marlowe Award.

Charles Beatty was elected to the Board of Directors, Polymer Division of the American Chemical Society (ACS) and received the 2003 Society of Plastic Engineers (SPE) Education Award.
Anthony Brennan was the 2003 UF Faculty Senate Chair and was named a member of the UF Board of Trustees.

Brij Moudgil was appointed in 2003 by Florida Governor Jeb Bush to the Board of the Florida Institute of Phosphate Research.

Wolfgang Sigmund was elected a member of the European Academy of Sciences.

Staff Recognition
Congratulations to the following MSE Staff for their many years of Continuous Service at the University of Florida:
- Alice Holt - 35 Years
- Angela Hunter-Edwards - 15 Years
- Paula J. Mathis - 10 Years
- Jennifer B. Horton - 5 Years

Student Recognition
In the 2003-2004 Academic School Year students in MSE received the following recognitions:

3 MSE Students received NSF Scholarships
Congratulations to the recipients of the National Science Foundation Scholarships. Materials Science & Engineering students received 3 of the 12 awards received at UF.

The MSE recipients are:
- Steven Crane
- Eric Macam
- Carrie Ross

Hansoo Kim is runner-up of the 2004 Pergamon prize.

Briggs White will be participating in the 54th meeting of Nobel Laureates in Lindau, Germany. This program will give Briggs the unique opportunity to meet and work with some of the best and brightest scientists in the world.

John M. Ligas is a member of the EnviroFlux Corporation engineering team which won 1st place in the Undergraduate Division of the Howard J. Leonhardt Business Plan Competition which was held at the UF Conference center on April 2, 2004. The engineering and business students that developed the EnviroFlux Corp. business plan are part of our pilot (from IPPD) “Integrated Technology Ventures” (ITV) program.

Hyeok-jin Lee received Honorable Mention at the 2004 Annual Joint Symposium of the Florida Society of Microscopy (FSM), Florida Chapter of the American Vacuum Society (AVS) and the Florida Section of the American Ceramics Society (ACerS) in March 2004 in Orlando, Florida.

Lizandra Williams received the American Vacuum Society (AVS) Graduate Research Award at the AVS 50th International Symposium which was held in November, 2003 in Baltimore, MD.

Lizandra Williams also received 2nd place at the 30th Annual National Convention of the National Society of Black Engineers (NSBE) Technical Symposium in March 2004 in Dallas, TX.

Heather Trotter, a first year graduate student, placed 3rd in the poster contest at the PERC Industrial Advisory Board Meeting held March 2004. The contest consisted of about 35 PERC graduate students.

Kwang Hyeon Baik, Joo-Han Kim, and Heesun Yang were the recipients of the Korean Graduate Student Research Award, recognizing them for their work in the area of Semiconductor Devices.

Jeannette Jacques was awarded the IBM/SRC Graduate Fellowship for 2003 as well as the National Science Foundation (NSF) Graduate Research Fellowship.
Undergraduate Dean’s List

Summer 2003:
Shannone S. Joseph

Fall 2003:
Nnenna J. Adimora
Tomer L. Alcalay
Samantha N. Andrews
Fermin M. Balerdi
Adam D. Bishop
Patrick Y. Chiu
Lesleyann W. Chow
Stefan Craciun
Steven P. Crane
Ryan S. Crutchfield
Lauren C. Culver
Melanie L. Disabb
Angela R. Dixon
Andrew R. Elias
Mohammed A. Elshennawy
Aaron D. Falchook
Christopher R. Fell
Eric L. Fiessinger
Jason A. Freed
Maggie E. Fuselier
Timothy F. Gehret
Devesh C. Goswami
Javier Gutierrez
Stephanie M. Hale
W. Adam Hammond
Ira Harkness
Brenden D. Hauser
Abby R. Herstich
M. Ray Holzworth
Samuel K. Houston, III
Emma M. Humphrey
Karly A. Jacobsen
Sidan Jin
Ronald E. Jones, Jr.
Sherly Jules
Michelle E. Kinahan
Jason M. Kopakin
Daphnee M. Laroche
John M. Ligas
Joshua K. Lowitz
Fernando J. Lugo
Chelsea M. Magin
M. Ray Holzworth
Samuel K. Houston, III
Emma M. Humphrey
Carlos R. Iguanzo
Karly A. Jacobsen
Ronald E. Jones, Jr.
Sherly Jules
Mohammed R. Karaman
Michael S. Kesler
Michelle E. Kinahan
Daphnee M. Laroche
John M. Ligas
Joshua K. Lowitz
Fernando J. Lugo
Chelsea M. Magin
Ian M. McKenna
Nnenna J. Adimora
Tomer L. Alcalay
Jeffrey W. Brooks
Nina V. Burbure
Ruby I. Chen
Lesleyann W. Chow
Steven P. Crane
Lauren C. Culver
Melanie L. Disabb
Angela R. Dixon
Andrew R. Elias
Mohammed A. Elshennawy
Christopher R. Fell
Kianna A. Ferguson
Eric L. Fiessinger
Jason A. Freed
Maggie E. Fuselier
Erin M. B. Gatenby
Ellina Gendлина
Janelle Y. Gooden
Devesh C. Goswami
W. Adam Hammond
Shan Hann

Spring 2004:
Nnenna J. Adimora
Tomer L. Alcalay
Adam D. Bishop
Jeffrey W. Brooks
Nina V. Burbure
Ruby I. Chen
Lesleyann W. Chow
Steven P. Crane
Lauren C. Culver
Melanie L. Disabb
Angela R. Dixon
Andrew R. Elias
Mohammed A. Elshennawy
Christopher R. Fell
Kianna A. Ferguson
Eric L. Fiessinger
Jason A. Freed
Maggie E. Fuselier
Erin M. B. Gatenby
Ellina Gendлина
Janelle Y. Gooden
Devesh C. Goswami
W. Adam Hammond
Shan Hann

Graduate Scholarships

Fall 2003:
Kevin Gibbard
Seongjun Heo
Rohit Khanna
Graduates Fall 2003 and Spring 2004

PhD - Fall 2003
Akin, Yalcin
Bibbit, Donald
Cho, Jeong-Min
Choi, Jaeyoung
Choi, Wonseop
Glass III, William Robert
Heo, Young-Woo
Jia, Wenling
Kale, Ajay
Kim, Hansoo
Kim, Joo Han
Kim, Yi-Yeoun
Lee, Kyu-pil
Lofton, Charles
Owings, Robert
Park, Jae Hyun
Yang, Heesun

PhD - Spring 2004
Clark, Mark
Jang, Inkook
Jeong, Byoung-Seong
Kim, Bumsu
Kulkarni, Nagraj
Lee, Dong-Won
Lee, Ki-Hong
Li, Hongqi
Liesenfeld, Bernd
Olszta, Matthew
Patil, Amol

MS - Fall 2003
Bradman, Narada
Capo, Jerry
Cheng, Xingguo
Chung, Philip
Dai, Lijun
Daosukho, Saijit
Devito, David
Erie, Jean-Marie
Frazier, Rachel
Hite, Jennifer
Holtman, Christina
Ivill, Mathew
Jacques, Jeannette
Jones, Michael
Juran, Brandon
Kathan, Kyle
King, Andrew
Lee, Charles
Li, Yuanjie
Liu, Alex
Malekzadeh, Seyed
Olszta, Matthew
Phillips, Roshenda
Pareddy, Prabhakar
Sherif, Ahmed
Smith, Jeremiah
Washington, Tara
Yates, Samantha

MS - Spring 2004
Baxter, James
Brown, Scott
Enriquez Cartagena, Iris
Estes, Thomas
Freeman, Shema
Gilligan, Robert
Goldstein, Peter
Hickey, Diane
Karve, Kiran
Kathan, Kyle
Kayo, Margaret
Krishna, Vijay
Lush, Debra
Mellman, James
Miller, Barry
Miller, Rachel
Oh, Tak-Keun
Parker, Karen
Pyrgiotakis, Georgios
Rowland, Jason
Shah, Kunal
Thai, Regina
Woo, Juhyun
Yoon, Sang Hyun
Zeenberg, Daniel
Zhou, Xin

BS - Fall 2003
Davis, Christopher
Dickinson III, Robert
Elachchabi, Amin
Gatewood, Jason
Kazi, Sofia
Lee, Charles
Reitberger, Richard
Ross, Carrie
Telheiro, Ruth

BS - Spring 2004
Adhyaru, Manan
Andrews, Samantha
Burbure, Nina
Chow, Lesleyann
Crane, Steven
Disabb, Melanie
Dixon, Angela
Gatenby, Erin
Gutierrez, Javier
Hammond, William
Hofrichter, Mathew
Karaman, Mohammed
Khatri, Prashant
Kissel II, David
Kopakin, Jason
Levien, Elizabeth
Ligas, John
Macam, Eric
Mata, Jessica
Miller, Barry
Mirabal, Michelle
Moore, John
Moore, Benjain
Nair, Rekha
Oller, Kenny
Pashuck, Eugene
Paul, Amber
Perez, Israel
Rios, Yarelis
Sidwell, Erin
Thai, Regina
Yasensky, David
Yorloff, Morgan
“Plug Into a Whole New World Through MSE Teach”

The department is again hosting its annual MSE Teach workshop from July 25 – 30, 2004. The purpose of this workshop is to provide math, science, and technology teachers with a series of inquiry and discovery laboratory activities based on the Florida Sunshine State Standards. Instruction will be a synergistic effort between MSE professors, two MSE Teach master teachers, and MSE graduate students. The goals for the workshop include:

- Provide a professional development opportunity for science teachers enabling them to update their science background
- Foster hands-on inquiry and discovery based laboratory activities that encourage an investigative creativity and a better understanding of “materials” around us
- Help teachers make connections to real-world implications in materials science and engineering
- Correlate laboratory lessons to the Sunshine State Standards and FCAT
- Provide teachers opportunities to interact and use the Orlando Science Center

Jennifer Horton will be directing the 2004 program. Vasana Maneeratana will be the MSE Teach lab coordinator. Dr. Cindy Holland and Ms. Elaine McCall-Taylor will assist with teaching and curriculum development for the program. For further information about MSE Teach, please contact Jennifer at (352) 846-3314 or email mseteach@mse.ufl.edu.

Some of the previous participants commented on how well the program will assist them in their teaching endeavors. Part of the wrap-up for the week is an annual BBQ in which faculty, staff, and students are invited to attend. Comments for the past two years have included:

“I’ve taught for 19 years, this was the best conference I’ve been to – that includes FAST, NSTA and other international conferences.”

“This workshop was a great experience. I’ve always been interested in MSE and this workshop increased or enhanced my interest.”

“It made me feel better about teaching labs in introductory chemistry and physics 9th grade integrated science. I feel I was treated royally and valued the financial assistance and lodging. I couldn’t have attended if it wasn’t provided.”

“I absolutely loved this workshop. I want to come back for more. This really made a lasting impression on me. Thank you for everything.”

“This is one of the best workshops I have ever attended. I got more out of this workshop than any other workshop I have attended.”

“I feel I can walk in my class and do this and I am excited about it! Super week!”

“I have taken away much to incorporate into my classroom – including the confidence to do the demos and labs.”

“This was one of the best if not the best in-service I have ever had in over 30+ years of teaching.”

“I wish to take this opportunity to thank the staff for all of their hard work! This program has been the most fantastic workshop/course I have ever had the good fortune to take! I have been given so much information, and so many new skills and ideas to take back to the classroom. This will truly enhance my classroom teaching and my students learning experiences. Once again, Thank You!”